THE MASTER OF SCIENCE (STATISTICS) PROGRAM

The MS Statistics aims to prepare students for advanced work in the profession as well as provide them with necessary foundation for high quality PhD for both theoretical and practical aspects.

ADMISSION AND GRADUATION OF STUDENTS

The student will be required to take a validation examination in the areas of Calculus, Matrix Algebra, and Introductory Statistics. If the student failed the examination, one or two of Stat 100, Stat 195, or Stat 117 will be taken during the summer/term prior to admission to the MS program.

To facilitate monitoring of progress of students, they will be required to submit a concept paper of possible research topic as part of the application requirement.

The student will be considered candidate for graduation upon completion of all required and elective courses with a weighted average of “2.0” or better and submission and successful defense of a Thesis.

For the MS Thesis, the student should be able to demonstrate capability of conducting basic research in statistics. The work should contribute in the body of knowledge in the statistical science. The new knowledge generated from the thesis can be derived analytically or computationally (simulations).

AREAS OF ELECTIVES

The following areas of electives can be pursued by the MS students.

- **Industrial Statistics** – there is a wide range of applications of statistics in the industry. Quality assurance, quality improvement, product development, etc. are some of the areas where statistics can be very useful.
- **Statistical Methods for Market Research and Business Intelligence** - from data collected through face-to-face interviews, focused group discussions, product testing, etc., the paradigm of market research is gradually changing. Data is now generated from actual usage/purchase history of consumers, cases where streaming data is generated from continuous consumer activities. While the data collection does not really follow some probabilistic methods, their volume is huge enough to treat it as approximating the population. This area incorporates both the ‘traditional’ and modern methods of market research leading towards business intelligence.
- **Social Statistics** – the generation of official statistics by the government requires statistical methods that are commonly used in social and economic applications. This area targets students working/intends to work for the government and those who eventually wish to pursue further studies in the social sciences or in economics.
- **Mathematical Statistics** – many statistical theories were developed with the aid of mathematical tools. Large sample properties, approximations, exact distributions, are some of the important results of mathematical statistics. This area may help prepare the students for more advanced work in statistical theory.
• **Computational Statistics** – the emergence of computational statistics was stimulated by the availability of very large data sets. These data are often generated by heterogeneous mechanisms, from unknown process, or from non-random mechanism. The availability of powerful computing facilities and efficient algorithms simplified the analysis of these data. Oftentimes, the methods used are iterative in nature, thus, exact sampling distributions are not mathematically tractable. Computational statistics is a venue where statistical theory evolves from a dominantly nonparametric framework and uses computing technology.

• **Risk Assessment Methods** – financial systems are vulnerable to random shocks that can easily topple old institutions. Many statistical methods can be tailor-fitted to address the concern of the financial sector, specifically, for risk management. The area of focus aims to produce students with quantitative skills they can use in effective risk management especially in the finance sector.

THE MS CURRICULUM

Core Courses
- Stat 231 Probability Theory
- Stat 232 Parametric Inference
- Stat 233 Linear Models
- Stat 234 Multivariate Analysis
- Stat 250 Sampling Designs

Other Courses
- Stat 230 Special Topics in Math for Statistics
- Stat 300 Thesis
- 2 Units of Stat 290 Statistical Consulting
- 12 Units of Electives.

The elective courses should be taken in one of the list below:

Checklist for MS

<table>
<thead>
<tr>
<th>Term</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer</td>
<td>Stat 117 Mathematics for Statistics</td>
<td>(3)</td>
</tr>
<tr>
<td></td>
<td>Stat 195 Introduction to Mathematical Statistics</td>
<td>(3)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>(6)</td>
</tr>
<tr>
<td>First Semester</td>
<td>Stat 230 Special Topics in Math for Statistics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Stat 231 Probability Theory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>9</td>
</tr>
<tr>
<td>Second Semester</td>
<td>Stat 232 Parametric Inference</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Stat 250 Sampling Designs</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Student will start working for the thesis at this point.</td>
<td></td>
</tr>
<tr>
<td>Third Semester</td>
<td>Stat 233 Linear Models</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Stat 290 Statistical Consulting</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>10</td>
</tr>
<tr>
<td>Fourth Semester</td>
<td>Stat 290 Statistical Consulting</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Stat 300 Thesis</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Stat 234 Multivariate Analysis</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>38</td>
</tr>
</tbody>
</table>
DESCRIPTION OF COURSES

STAT 100 CALCULUS AND MATRIX ALGEBRA FOR STATISTICS.
Differential and integral calculus; infinite series; matrix algebra
Credit: 3 u

STAT 195 INTRODUCTION TO MATHEMATICAL STATISTICS.
Probability distribution, sampling distribution, parametric and nonparametric inference.
Credit: 3 u

STAT 210 STATISTICAL SOFTWARE.
Database management and programming using statistical software.
Credit: 3 u

STAT 211 STATISTICAL COMPUTING.
Algorithms for statistical computing; numerical analysis for linear and nonlinear models; random number generation; Monte Carlo methods.
Credit: 3 u

STAT 221 INTRODUCTORY PROBABILITY.
Combinatorial analysis; sample space and random variables, probability distribution function; expectation; stochastic independence; common probability distributions.
Credit: 3 u

STAT 222 INTRODUCTION TO STATISTICAL INFERERENCE.
Sampling distributions, point and interval estimation; tests of hypothesis.
Pre-requisite: Stat 221
Credit: 3 u

STAT 223 APPLIED REGRESSION ANALYSIS.
Model building; diagnostic checking; remedial measures; applications
Co-requisite: Stat 222 or equivalent
Credit: 3 u

STAT 224 EXPERIMENTAL DESIGNS.
Completely randomized designs; randomized complete block design; Latin square design; factorial experiments; incomplete block design; higher-order designs.
Pre-requisite: Stat 223 or equivalent
Credit: 3 u

STAT 225 TIME SERIES ANALYSIS.
Classical procedures; stationarity; Box-Jerkins modeling procedure: autocorrelation function, partial autocorrelation function; identification, estimation, diagnostic checking, forecasting; transfer functions; applications.
Pre-requisite: Stat 223 or equivalent
Credit: 3 u
STAT 226 APPLIED MULTIVARIATE ANALYSIS.
Multivariate normal distribution; principal components analysis; biplots and h-plots; factor analysis; discriminant analysis; cluster analysis; multidimensional scaling; correspondence analysis; canonical correlation analysis; graphical and data oriented techniques; applications
Co-requisite: Stat 223 or its equivalent
Credit: 3 u

STAT 230 SPECIAL TOPICS IN MATHEMATICS FOR STATISTICS.
Special topics in mathematics and their applications in statistics. To be arranged according to the needs of students.
Credit: 3 u
(may be repeated provided that the topics are different; topics to be indicated for record purposes)

STAT 231 PROBABILITY THEORY.
Probability spaces and random variables; probability distributions and distribution functions; mathematical expectation; convergence of sequences of random variables; laws of large numbers; characteristics functions.
Co-requisite: Stat 230
Credit: 3 u

STAT 232 PARAMETRIC INference.
Exponential family of densities; point estimation: sufficiency, completeness, unbiasedness, equivariance; hypothesis testing.
Pre-requisite: Stat 231
Credit: 3 u

STAT 233 LINEAR MODELS.
Subspaces and projections; multivariate normal distribution, non-central distributions, distribution of quadratic forms; the general linear model of full column rank, tests about the mean; tests about the variance; the general linear model not of full column rank; estimability and testability.
Pre-requisite: Stat 232
Credit: 3 u

STAT 234 MULTIVARIATE ANALYSIS.
Distribution theory for multivariate analysis; the multivariate one-and-two sample models; the multivariate linear model.
Pre-requisite: Stat 233
Credit: 3 u

STAT 235 SURVEY OF STOCHASTIC PROCESSES.
Markov chains; Markov processes; Poisson processes; renewal processes; martingales.
Pre-requisite: Stat 221
Credit: 3 u
STAT 240 HIGH DIMENSIONAL DATA.
High dimensional data; high dimensional data visualization; high dimensional data analysis; dimension reduction; pattern search; clustering; applications
Pre-requisite: Stat 226/Equivalent, Stat 223/Equivalent
Credit: 3 u

STAT 241 NONLINEAR REGRESSION.
Classification of nonlinear models; iterative estimation and linear approximation; practical considerations: model specification, starting values, transformations; convergence; multiresponse model; models from differential equations; nonlinear inference regions; measures of nonlinearity; applications.
Pre-requisite: Stat 223 or equivalent
Credit: 3 u

STAT 242 ECONOMETRIC METHODS.
Distributed lag models; structural change; simultaneous equations; limited dependent variables; ARCH, GARCH, processes; cointegration; applications.
Pre-requisite: Econ 101, Stat 223 or equivalent
Credit: 3 u

STAT 243 CATEGORICAL DATA ANALYSIS.
Cross-classified tables, multidimensional tables; loglinear model; logit models, measures of association; inference for categorical data; applications
Pre-requisite: Stat 223 or equivalent
Credit: 3 u

STAT 244 DESIGN AND ANALYSIS OF CLINICAL EXPERIMENTS.
Reliability of measurements; parallel groups design; control of prognostic factors; blocking and stratification; analysis of covariance; repeated measurements and crossover studies; balanced incomplete block designs; factorial experiments; split-plot designs; applications.
Pre-requisite: Stat 223 or equivalent
Credit: 3 u

STAT 245 SURVIVAL ANALYSIS.
Functions of survival time; estimation of survival functions; survival distributions and their applications; distribution fitting and goodness-of-fit tests.
Pre-requisite: Stat 222 or equivalent
Credit: 3 u

STAT 246 RESPONSE SURFACE METHODS.
Product design and development; optimal designs; response surface models; response surface optimization; applications.
Pre-requisite: Stat 223/Equivalent
Credit: 3 u
STAT 247 DATA MINING AND BUSINESS INTELLIGENCE.
Principles of data mining; methods of data mining; themes of data mining; applications of data mining in business intelligence.

Pre-requisite: Stat 210/Equivalent, Stat 226/Equivalent, Stat 223/Equivalent, and Stat 225/Equivalent
Credit: 3 u

STAT 249 NONPARAMETRIC MODELING.
Smoothing methods; kernel smoothing; spline smoothing; regression trees; projection pursuit; nonparametric regression; cross-validation; scoring; high dimensional predictors; additive models; backfitting.

Pre-requisite: Stat 222/232 and Stat 223/Equivalent
Credit: 3 u

STAT 250 SAMPLING DESIGNS.
Concepts in designing sample surveys; non-sampling errors; simple random sampling; systematic sampling; sampling with varying probabilities; stratification, use of auxiliary information; cluster sampling; multi-stage sampling;

Co-requisite: Stat 222/Stat 232
Credit: 3 u

STAT 251 SURVEY OPERATIONS.
Planning a survey; sample design and sample size, frame construction; tabulation plans; preparation of questionnaires and manual of instruction; field operations; processing of data, preparation of report.

Pre-requisite: Stat 222
Co-requisite: Stat 223
Credit: 3 u

STAT 252 BOOTSTRAP METHODS.
Empirical distribution functions; resampling and nonparametric statistical inference; optimality of the bootstrap; bootstrap in hypothesis testing; bootstrap in confidence intervals; bootstrap in regression models; bootstrap for dependent data.

Pre-requisite: Stat 222/232 and Stat 223/Equivalent
Credit: 3 u

STAT 260 QUANTITATIVE RISK MANAGEMENT.
Market risk; financial time series; copulas; extreme value theory; credit risk models; operational risks.

Pre-requisite: Stat 223 and Stat 225
Credit: 3 u
STAT 261 STOCHASTIC CALCULUS FOR FINANCE.
Continuous-time model; Brownian motion; random walk; quadratic variation; Ito formula; Black-Scholes equation; risk-neutral measure; martingale representation theorem; fundamental theorems of asset pricing
Pre-requisite: Stat 221/231/Equivalent
Credit: 3 u

STAT 262 NONPARAMETRIC STATISTICS.
Distribution-free statistics; U-statistics; power functions; asymptotic relative efficiency of tests; confidence intervals and bounds; point estimation; linear rank statistics; other methods for constructing distribution-free procedures.
Pre-requisite: Stat 232
Credit: 3 u

STAT 263 BAYESIAN ANALYSIS.
Bayesian inference; empirical and hierarchical analysis; robustness; numerical procedures.
Pre-requisite: Stat 232
Credit: 3 u

STAT 264 ELEMENTS OF DECISION THEORY.
Basic concepts, risk function, Bayes and minimax solutions of decision problems, statistical decision functions, formulation of general decision problems.
Pre-requisite: Stat 231
Credit: 3 u

STAT 265 ROBUST STATISTICS.
Breakdown point and robust estimators; M-, R-, and L- estimates; robust tests; robust regression and outlier detection.
Pre-requisite: Stat 232
Credit: 3 u

STAT 266 APPLIED NONPARAMETRIC METHODS.
Methods for single, two and k samples; trends and association; nonparametric bootstrap.
Pre-requisite: Stat 222 and Stat 223
Credit: 3 u

STAT 267 ADVANCED APPLIED MULTIVARIATE ANALYSIS.
Confirmatory factor analysis; multidimensional scaling; correspondence analysis; classification trees; CHAID; procrustes analysis; neural networks; structural equation modeling.
Pre-requisite: Stat 226 or equivalent/COI
Credit: 3 u
STAT 268 ADVANCED TIME SERIES ANALYSIS.
Nonstationarity; cointegration; interventions models; state space models; transfer functions; frequency domain; panel data; nonparametric methods for time series; nonparametric prediction; AR-Sieve; block bootstrap
Pre-requisite: Stat 223/Equivalent and 225/Equivalent
Credit: 3 u

STAT 270 EXPLORATORY DATA ANALYSIS.
Graphical methods; single batch analysis and analysis of several batches; order statistics; resistant estimators; robust tests; robust regression; median polish; applications.
Pre-requisite: Stat 222 or equivalent
Credit: 3 u

STAT 271 STATISTICAL QUALITY CONTROL.
Overview of the statistical methods useful in quality assurance; statistical process control; control charts for variables and attributes; cusum chart, multivariate chart; process capability analysis; acceptance sampling; MIL STD tables and JIS tables; off-line quality control; introduction to response surface analysis; Taguchi method; applications.
Pre-requisite: Stat 222
Credit: 3 u

STAT 272 RELIABILITY THEORY.
Coherent systems; paths and cuts, life distribution; dependent components; maintenance policies and replacement models; domains of attraction.
Pre-requisite: Stat 231
Credit: 3 u

STAT 273 SIX SIGMA STATISTICS.
DMAIC(define-measure-analyze-improve-control) methodology; statistical process control; process capability; failure mode and effects analysis (FMEA); measurement system analysis; optimization by experimentation; taguchi method.
Pre-requisite: COI
Credit: 3 u

STAT 274 MARKET RESEARCH.
The marketing research; data and data generation in marketing research; analytical methods; consumer behavior modeling.
Pre-requisite: Stat 223/Equivalent and Stat 226/Equivalent
Credit: 3 u

STAT 275 ECONOMIC STATISTICS.
The Philippine Statistical System; surveys being regularly conducted by the system: questionnaire designs, sampling designs, estimators, issues; official statistics being generated: national accounts, consumer price index,input-output table, poverty statistics, leading economic indicators, seasonally adjusted series; statistical methods useful in generating official statistics.
Pre-requisite: Stat 222/232 and Stat 250
Credit: 3 u
STAT 276 STATISTICS FOR GEOGRAPHIC INFORMATION SYSTEMS.
Components of a geographical information system, data structures and elements of spatial
modeling; exploratory spatial data analysis; quadrat analysis, tessellations and spatial
autocorrelation; spatial modeling and prediction; some sampling theory; applications.
Pre-requisite: Consent of Instructor
Credit: 3 u

STAT 277 STATISTICS FOR IMAGE ANALYSIS.
Radiometric enhancement techniques; geometric enhancement using image domain techniques;
multispectral transformation of data; supervised classification techniques; clustering and
unsupervised classification; applications.
Pre-requisite: Consent of Instructor
Credit: 3 u

STAT 280 SPECIAL FIELDS OF STATISTICS.
Courses in special fields, new areas or latest developments in statistics.
Pre-requisite: Consent of Instructor
Credit: 3 u
(may be repeated provided that the topics are different; topics to be indicated for record purposes)

STAT 290 STATISTICAL CONSULTING.
Application of statistical concepts and methodologies to data of researchers seeking statistical
consultancy services.
Pre-requisite: Consent of Instructor
Credit: 1 unit

STAT 298 SPECIAL PROBLEM.
The problem is on a subject involving the use of statistical methods and analysis.
Credit: 5 u

STAT 300 THESIS.
The thesis may be on a subject involving original investigation, which in some respect modifies or
enlarges what has been previously known and is recommended for approval by the major professor
or adviser.
Credit: 6 u