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Abstract 

 

Probability sampling in finite populations are completely dependent on the availability of a 
reliable frame. Though frame updating is commonly done prior to sample selection, there are 
many instances where accessibility of the field location of the sampling units causes the 
discrepancy between the sampled population and the frame. This causes doubts on the 
appropriateness of design-based estimates. Under some simulated frame problems, model-
based estimation is viewed in the context of re-sampling methods to estimate the population 
total. Even if the sample is drawn only from the middle 50% of the population distribution, 
model-based estimates are superior or at least comparable to design-based estimates 
especially for small populations. In symmetric populations, the choice of an auxiliary variable 
(predictor) is important but in a skewed population, performance of model-based estimator is 
robust to the relationship between the target variable and the auxiliary predictor. The 
bootstrap sampling errors are generally lower than the design-unbiased sampling errors.    
 

Introduction 

 

The literature of finite population sampling is dominated by the design-based estimation 

framework. Kalton(2000), summarized the developments in design-based estimation and the 

model-assisted design-based framework that adopts certain features of model-based 

estimation. Although the design-based framework of statistical inference in finite populations 

is generally optimal and acceptable in the statistical community, it depends so much on the 

availability of a reliable frame. The sample selection process, field identification of the 

sampled units, and computation of the sampling weights, are completely dependent on the 

frame.   

 

Both the dynamism in the target variables and the sampling units itself generally threatens the 

validity of the frame. In human population units, migration easily causes the frame to be 

outdated.  In business establishments, mergers, integration, diversification of the business 
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would also cause the frame to be outdated. In rural areas, accessibility of the sampling units 

would also create a significant discrepancy between the target population and the sampling 

population. 

 

What will happen if the actual sampling population is different from the target population? In 

development studies, whenever the sampling population deviates from the target population, a 

new population is defined or limitations and constraints are explicitly declared. It is however, 

a waste of information if some auxiliary variables are not used in generating any information 

about the excluded segment of the target population.   

 

Some examples of symmetric distribution having coverage problem would include sales of 

firms where those with lowers sales may not cooperate to mask problems with competition or 

those with higher sales will not cooperate to shield them from taxation. In a skewed 

distribution like income, those in the lower income and upper income are difficult to locate or 

are hard to convince to cooperate to the survey. This results to sample selection only from 

among the middle-income group. 

 

There are a lot of literatures on issues relating to various frame problems. Repeatitive surveys, 

or specifically those that uses rotating samples are very susceptible to frame problems. 

Optimum selection from among the new addition to the population is better than treating both 

the new and continuing units equally (Hughes, 1991). Birth of new sampling units usually 

arises when a list from an external source is merged into the existing frame to be updated. 

Dual frames and multiple frames in general, is usually addressed through independent 
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selection of samples from each frame, then estimation from the pooled samples are suggested, 

example pseudo-MLE by Skinner and Rao (1996). In the context of sample selection, Hedayat 

and Robieson(1998), under regularity conditions, proved that a SRS drawn from a population 

where “undesirable” units are assigned zero probabilities is equivalent to SRS from the 

desirable units only. The implication is that when separate data collection is required for a 

small/segment of the population, so it can be treated as certainty units, then selection from the 

majority of the units will not violate any rules in probability sampling. 

 

The literature on model-based estimation is also lengthy.  (Zacks, 2002) presented a good 

summary of model-based estimation. The review specifically focused on those that follows 

Basu’s framework that practically ignored the sampling design in the analysis. This is a 

different framework from the one presented by Kalton(2000) that is model-assisted but still 

invokes the design in the analysis. In 1970’s the design-based framework was challenged by 

model-dependent framework, but design-based model-assisted framework prevailed (Kalton, 

2000). Increasing coverage error however, is posing potential problems in weight construction 

among complex survey designs. Several imputation procedures are available, but problems on 

the consistency and efficiency of the estimates continue to prevail. 

 

On Model-Based and Predictive Estimation  

 

A sample selection process essentially dichotomizes the target population into the sampled 

segment and the non-sampled segment. Predictive estimation then forms an estimate of the 

total by adding the sampled values to the predicted total of the non-sampled part. Prediction 
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of the total in the non-sampled part utilizes the sample observations. Minimum MSE estimate 

of the total of the non-sampled part is just the mean of the sample multiplied by the total 

number of non-sampled units (similar to design-unbiased estimate). The Bayesian estimator, 

for squared error loss function is given by   



Si

Si
Si

iB ySyEyT ,ˆ , where  SyS,  is the 

observed sample (Zacks, 2002). 

 

The superpopulation approach assumes that the population values y1, y2, …,yN is a realization 

of some random process. Furthermore, there is an infinite superpopulation of random vectors, 

and that the unobserved part is predicted from the model to make inference (Zacks, 2002). 

The empirical characterization of the model is usually aided by the sampled part.   

 

The model-based approach has been compared to design-based procedures and has its own 

limitations. Model-dependent estimates depend on the validity of the postulated model or 

robustness of the estimates to model failure (Kalton, 2000). The superpopulation model 

however, looks like a Bayesian implementation of the surveyor’s background knowledge and 

information (Zacks, 2002).   

 

There is an increasing interest in Bayesian predictive modeling leading to a significant 

contribution to model-based estimation. Rao (1999) summarized some model-based 

techniques in small area estimation including empirical best linear unbiased prediction 

(EBLUP), empirical Bayes (EB), and hierarchical Bayes (HB). Chattopadhyay and Datta 

(1994) used EB and HB in the simultaneous estimation of the means from different strata in 
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an error-in-variable superpopulation model (measurement error). EB and HB outperformed 

sample strata means.   

 

An Alternative View on Model-Based Predictive Estimation 

 

Model-based estimation can be formulated in the context of resampling. Suppose a sample 

from the population is given: y1, y2,…,yn. The population total is decomposed into: 





Si

i
Si

i yyY . The first term is known, and to compute the estimator for the total, the total 

of the non-sampled part should be estimated. Given an auxiliary variable x, a model 

    ,xfy  can be fitted using the sample observations. The auxiliary variable x must be 

measured in the sample and should be available for the non-sampled part. The model can be 

used in predicting y of the non-sampled part by substituting x into the fitted model. The 

estimate is then 



Si

ipredicted
Si

i yyY ˆˆ . The estimator can be viewed as recreation of the 

population, units are composed of actual y-values and of predicted y-values. This “artificial” 

population is parallel to the one generated in resampling. Thus, a nonparametric bootstrap can 

be used in estimating the population characteristics including the sampling errors. 

 

For a parameter , let the estimate be i̂  i = 1, 2, …, k for the ith replicate drawn from the 

reconstructed population. The bootstrap estimate is 



k

i
ik 1

ˆ1ˆ  . The standard error of ̂  is 

estimated from    






k

i
ik

es
1

2ˆˆ
1

1ˆ..  . Note that the monte carlo estimate of the 
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population total coincide the total of the recreated population for a reasonably sized 

replication. 

 

The estimation procedure can also handle nonresponse and missing data. The important 

requirement of the estimation procedure is the availability of the auxiliary information x for 

all sampling units in the target population. Even if the frame does not contain information on 

x for all units, for as long as it can be generated with minimal cost requirement, the procedure 

still applies. The appropriateness of the postulated model is also important.    

 

Simulation Scenarios 

 

Two basic shapes of the distribution will be simulated. A symmetric distribution can best 

represent sampling populations where the variable of interest may include sales, agricultural 

production, etc. On the other hand, a skewed distribution can represent sampling populations 

where the target variable is a count. 

 

The shape of the sampling population can possibly influence the distance between the 

estimated total and the true total. The normal distribution will represent the symmetric 

distribution, while poisson represents the skewed distribution. In each distribution, 

homogeneous and heterogeneous cases will be simulated. The part of the frame that prevents 

access to sampling units may also affect the estimate and to this effect, four sampling 

scenarios will be simulated. S1 is when simple random selection (SRS) will be made only in 

the bottom 25% of the population, S2 SRS in the middle 50%, S3 SRS in the upper 25% and 
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S4 SRS from the whole population. S1 and S3 are extreme cases, but it will help in the 

assessment of the performance of the estimation procedure in extreme cases. S2 should 

represent a typical frame constraint, though a little bit exaggerated. Normally, the problems 

with the frame would affect only small proportions at the tails, so that if the procedure 

performs well in S2, then most probably it will perform well in many cases. Sampling rates 

were simulated at 1%, 3%, 5%, and 10%. 

 

Only one auxiliary variable is used. The relationship between y and x is controlled through 

the simulation of y and the error term and computing the values of x. A multiplier on the error 

component would pull down the prediction ability of x on y and this serves as the control on 

the relationship. For the symmetric population, normal regression model was used, while 

poisson regression with log link function is used in the skewed population.    

 

Results and Discussions 

The percent difference between the estimated total from the true total are summarized in 

Tables 1 to 4.   

In a homogeneous normal population, the sampling rate have minimal effect on the closeness 

of estimates to the true total. There is also a minimal difference between small and large 

populations. A strong association between y and x ensures a minimal distance between the 

estimate and the true total, especially in large populations. Even in the worst case of the 

relationship between y and x, the distance is generally short (less than 10%). There is 

expectedly an underestimation in S1 and overestimation in S3. S2 and S4 are comparable to 

the design-unbiased estimates of the population total. 
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In the heterogeneous normal population, the sampling rate affected only the design-unbiased 

estimates in small population. The role of the relationship between y and x is highlighted on 

the distance between the estimate and the true population total. The estimates from S2 even 

for low R2 cases are close to the true values especially in large populations. Even in small 

populations with low R2, estimates in S2 are still very close to the true totals. Estimates in S1 

and S3 are good only when R2 is high. Estimates from S2 and S4 and better than the design-

unbiased estimates. 

 

In skewed populations, the sampling rate has no effect on the distance between the estimates 

and the true population totals. The population size and the relationship between y and x also 

have minimal effect on the distance.  S2, S4 and the design-unbiased estimates are generally 

comparable. In small population however, the estimates from S2 are superior.   

 

Generally, the bootstrap estimates of the standard errors are lower in the proposed estimation 

procedure than in the design-unbiased estimates resulting to very low coefficient of variation 

(see Tables 5-8). 

 

Conclusions 

The estimation procedure performs well in small populations. Even for large populations, the 

estimates are comparable to the design-unbiased estimates. Even if samples are drawn only 

from the middle 50% of the distribution, regardless of the shape, model-based predictive 

estimate is either superior or comparable to the design-unbiased estimates. In symmetric 
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populations, a good choice of the auxiliary variable is important but not so in skewed 

populations.  

 

The common problems with the frame that contaminate measurement or prevent 

access/identification of units in the tails/extreme parts can be resolved through model-based 

predictive estimation.   

 

If frame problems occur, it is important that an auxiliary variable (x) is available or can be 

easily measured for units where access to the sampling unit to measure the target variable is 

not feasible. The relationship between y and x in the sample can be used in recreating the 

population to perform nonparametric inference in a finite population. 
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Table 1: Percent Difference of Estimated Total from Actual Total in Homogeneous Normal 
Population: N(100,25) 

R2 96.48 96.48 96.48 96.48 52.05 52.05 52.05 52.05 21.08 21.08 21.08 21.08 
Sampling Rate 1% 3% 5% 10% 1% 3% 5% 10% 1% 3% 5% 10% 
Sample 1 2.46 1.59 0.84 0.64 4.96 5.07 5.62 5.40 6.87 6.63 6.94 6.68 
Sample 2 -0.30 -0.09 0.01 0.04 0.86 -0.33 0.56 -0.91 -1.22 -0.35 -0.02 -0.59 
Sample 3 -0.95 -0.96 -1.07 -1.01 -10.44 -6.97 -6.52 -6.83 -9.72 -7.95 -7.60 -7.62 
Sample 4 -0.08 -0.11 0.15 -0.06 -0.83 -0.49 -0.10 0.43 -0.53 -1.57 0.54 0.16 

N
=1

,0
00

 

Design-SRS -1.04 1.56 0.60 0.76 -0.89 -0.34 0.00 0.23 -0.81 -0.83 1.01 0.16 
              

R2 96.17 96.17 96.17 96.17 49.39 49.39 49.39 49.39 19.07 19.07 19.07 19.07 
Sampling Rate 1% 3% 5% 10% 1% 3% 5% 10% 1% 3% 5% 10% 
Sample 1 0.75 0.70 0.71 1.10 4.44 4.91 4.77 4.88 5.77 5.69 5.55 5.44 
Sample 2 0.00 0.14 0.04 0.06 -0.29 -0.11 0.21 -0.15 0.06 -0.25 -0.14 0.07 
Sample 3 -0.89 -0.49 -0.74 -0.70 -5.26 -4.89 -4.98 -5.07 -6.36 -5.36 -5.84 -5.68 N

=1
0,

00
0 

Sample 4 0.08 0.12 -0.04 0.00 -0.14 -0.18 -0.28 -0.05 -0.32 0.54 0.23 -0.05 
 Design-SRS 0.02 0.09 0.02 0.15 -0.67 -0.11 -0.21 0.09 0.03 0.54 -0.08 0.03 
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Table 2: Percent Difference of Estimated Total from Actual Total in Heterogeneous Normal 
Population: N(100,2500) 

R2 99.96 99.96 99.96 99.96 52.03 52.03 52.03 52.03 21.08 21.08 21.08 21.08 
Sampling Rate 1% 3% 5% 10% 1% 3% 5% 10% 1% 3% 5% 10% 
Sample 1 0.48 -0.45 0.90 0.49 37.92 52.84 46.18 49.05 61.25 70.70 67.15 60.97 
Sample 2 -0.28 -0.10 0.20 0.14 -5.30 -5.56 2.38 -1.00 5.03 -2.59 -0.99 -2.62 
Sample 3 0.08 0.27 -0.33 -0.23 -43.12 -52.95 -46.04 -50.01 -62.30 -52.78 -64.83 -65.02 
Sample 4 -0.22 -0.21 -0.22 0.00 -0.15 12.66 -0.66 2.49 -19.41 -1.53 0.55 2.74 

N
=1

,0
00

 

Design-SRS 59.88 4.76 0.50 -4.56 -9.63 11.14 -6.29 1.93 -20.22 -2.78 4.53 1.88 
              

R2 99.96 99.96 99.96 99.96 49.39 49.39 49.39 49.39 19.07 19.07 19.07 19.07 
Sampling Rate 1% 3% 5% 10% 1% 3% 5% 10% 1% 3% 5% 10% 
Sample 1 -0.02 0.34 0.02 -0.02 50.29 52.34 48.56 47.43 60.13 59.28 59.49 60.23 
Sample 2 -0.18 -0.01 -0.07 -0.09 3.08 1.82 -1.02 0.07 -0.18 0.25 0.47 -0.56 
Sample 3 -0.06 0.25 0.12 -0.05 -48.85 -52.54 -50.95 -52.37 -65.03 -57.60 -60.97 -61.22 
Sample 4 -0.18 -0.06 -0.04 -0.01 3.90 -0.06 -2.33 -1.11 -2.78 -3.26 -3.74 2.56 

N
=1

0,
00

0 

Design-SRS -1.67 -2.74 1.10 -1.00 -1.10 -2.70 0.79 -0.29 -0.47 -2.71 -4.79 2.97 
 
 
 

Table 3: Percent Difference of Estimated Total from Actual Total in Low-Mean Poisson 
Population: Po(10) 

P-Value ( ̂ ) <.0001 <.0001 <.0001 <.0001 0.0441 0.0441 0.0441 0.0441 0.3454 0.3454 0.3454 0.3454 
Sampling Rate 1% 3% 5% 10% 1% 3% 5% 10% 1% 3% 5% 10% 
Sample 1 35.99 29.49 35.01 30.83 31.29 39.25 35.78 34.75 40.58 34.47 31.19 36.57 
Sample 2 -2.58 -3.31 -0.51 0.20 1.67 0.71 0.54 0.29 -5.60 -0.17 1.40 0.39 
Sample 3 -43.42 -41.26 -37.36 -39.01 -31.81 -38.15 -39.62 -39.30 -42.60 -42.97 -42.52 -37.50 
Sample 4 15.08 -9.75 59.47 -2.26 -11.86 4.24 -1.49 0.12 1.16 2.70 10.17 2.21 

N
=1

,0
00

 

Design-SRS 8.75 -9.63 0.33 -1.98 6.75 4.74 -0.27 -0.37 -0.27 2.74 10.16 2.24 
              

P-Value ( ̂ ) <0.0001 <0.0001 <0.0001 <0.0001 0.0202 0.0202 0.0202 0.0202 0.5415 0.5415 0.5415 0.5415 
Sampling Rate 1% 3% 5% 10% 1% 3% 5% 10% 1% 3% 5% 10% 
Sample 1 31.46 33.25 32.91 32.46 35.20 35.49 34.50 34.96 34.27 33.61 34.27 34.24 
Sample 2 1.31 -0.25 0.23 0.44 -0.51 0.26 0.16 0.58 0.71 -0.13 0.99 0.51 
Sample 3 -39.25 -35.34 -37.81 -37.09 -32.48 -37.34 -38.12 -37.52 -38.51 -37.46 -37.46 -37.43 N

=1
0,

00
0 

Sample 4 3.62 0.51 1.63 -0.49 4.06 3.28 -0.61 1.03 3.70 -0.03 0.55 2.45 
 Design-SRS 3.79 90.01 90.12 -0.15 3.79 3.25 -0.56 1.04 90.34 0.29 0.61 2.40 
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Table 4:  Percent Difference of Estimated Total from Actual Total in High-Mean Poisson 
Population: Po(100) 

P-Value ( ̂ ) 0.0009 0.0009 0.0009 0.0009 0.0322 0.0322 0.0322 0.0322 0.6200 0.6200 0.6200 0.6200 
Sampling Rate 1% 3% 5% 10% 1% 3% 5% 10% 1% 3% 5% 10% 
Sample 1 13.91 14.84 13.44 13.71 13.78 13.92 14.44 13.92 11.41 13.63 13.08 14.01 
Sample 2 0.31 -0.22 -1.32 -0.55 1.12 -0.47 0.35 -0.46 1.89 0.74 -0.68 -0.72 
Sample 3 -13.27 -14.12 -14.30 -14.34 -13.73 -15.28 -15.04 -13.41 -11.76 -14.69 -13.81 -14.25 
Sample 4 0.76 0.75 2.89 -0.83 -6.58 3.90 -0.68 -0.84 -4.26 -0.38 -1.36 -1.53 

N
=1

,0
00

 

Design-SRS 0.55 0.81 2.86 -0.73 -5.89 3.90 -0.76 -0.76 -3.58 -0.73 -1.32 -1.53 
              

P-Value ( ̂ ) <0.0001 <0.0001 <0.0001 <0.0001 0.0159 0.0159 0.0159 0.0159 0.7251 0.7251 0.7251 0.7251 
Sampling Rate 1% 3% 5% 10% 1% 3% 5% 10% 1% 3% 5% 10% 
Sample 1 14.31 14.19 14.59 14.24 14.47 14.08 14.09 14.19 14.89 14.22 14.43 14.23 
Sample 2 0.23 1.02 0.68 0.35 0.19 0.16 0.60 0.56 0.25 0.03 0.18 0.35 
Sample 3 -13.22 -13.50 -13.61 -13.40 -13.78 -13.81 -13.26 -13.44 -13.62 -13.58 -13.52 -13.52 
Sample 4 1.62 0.27 -0.49 0.10 -0.23 -0.34 -3.22 0.14 -1.08 -0.76 0.31 0.01 

N
=1

0,
00

0 

Design-SRS 1.17 0.23 -0.49 0.09 -0.22 -0.33 -0.23 0.14 -0.97 -0.72 0.31 0.00 
 

 
Table 5: Coefficient of Variation of Estimated Total in a Homogeneous Normal Population: 

N(100,25) 
R2 96.48 96.48 96.48 96.48 52.05 52.05 52.05 52.05 21.08 21.08 21.08 21.08 
Sampling Rate 1% 3% 5% 10% 1% 3% 5% 10% 1% 3% 5% 10% 
Sample 1 0.01 0.02 0.03 0.05 0.01 0.01 0.01 0.02 0.00 0.01 0.01 0.02 
Sample 2 0.01 0.02 0.03 0.05 0.01 0.01 0.02 0.01 0.00 0.01 0.01 0.01 
Sample 3 0.01 0.03 0.03 0.05 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.01 
Sample 4 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.01 0.02 0.02 0.02 
Design-SRS 1.59 1.07 0.68 0.44 2.23 0.97 0.67 0.43 2.17 0.93 0.74 0.45 
BS Replication 500 500 500 500 500 500 500 500 500 500 500 500 

N
=1

,0
00

 

BS Sample Size 10 30 50 100 10 30 50 100 10 30 50 100 
              

R2 96.17 96.17 96.17 96.17 49.39 49.39 49.39 49.39 19.07 19.07 19.07 19.07 
Sampling Rate 1% 3% 5% 10% 1% 3% 5% 10% 1% 3% 5% 10% 
Sample 1 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 
Sample 2 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Sample 3 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Sample 4 0.00 0.01 0.01 0.02 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.01 
Design-SRS 0.45 0.29 0.23 0.15 0.46 0.27 0.23 0.15 0.52 0.31 0.21 0.16 
BS Replication 500 500 500 500 500 500 500 500 500 500 500 500 

N
=1

0,
00

0 

BS Sample Size 100 300 500 1000 100 300 500 1000 100 300 500 1000 
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Table 6: Coefficient of Variation of Estimated Total in a Heterogeneous Normal Population: 
N(100,2500) 

R2 99.96 99.96 99.96 99.96 52.03 52.03 52.03 52.03 21.08 21.08 21.08 21.08 
Sampling Rate 1% 3% 5% 10% 1% 3% 5% 10% 1% 3% 5% 10% 
Sample 1 0.17 0.30 0.38 0.53 0.17 0.17 0.27 0.41 0.20 0.18 0.29 0.34 
Sample 2 0.16 0.31 0.38 0.51 0.03 0.07 0.05 0.12 0.03 0.06 0.07 0.07 
Sample 3 0.17 0.29 0.38 0.53 0.04 0.07 0.09 0.12 0.01 0.07 0.04 0.07 
Sample 4 0.17 0.29 0.37 0.52 0.20 0.23 0.29 0.32 0.02 0.16 0.17 0.23 
Design-SRS 40.24 10.48 8.52 4.46 5.70 9.72 7.33 4.43 18.14 8.84 7.57 4.80 
BS Replication 500 500 500 500 500 500 500 500 500 500 500 500 

N
=1

,0
00

 

BS Sample Size 10 30 50 100 10 30 50 100 10 30 50 100 
              

R2 99.96 99.96 99.96 99.96 49.39 49.39 49.39 49.39 19.07 19.07 19.07 19.07 
Sampling Rate 1% 3% 5% 10% 1% 3% 5% 10% 1% 3% 5% 10% 
Sample 1 0.05 0.09 0.11 0.17 0.03 0.06 0.08 0.12 0.01 0.05 0.05 0.08 
Sample 2 0.05 0.09 0.11 0.16 0.01 0.02 0.02 0.03 0.00 0.01 0.01 0.02 
Sample 3 0.05 0.09 0.11 0.16 0.01 0.01 0.02 0.03 0.00 0.01 0.01 0.02 
Sample 4 0.05 0.09 0.11 0.16 0.04 0.06 0.09 0.12 0.02 0.04 0.05 0.09 
Design-SRS 5.29 2.96 2.26 1.48 5.22 2.84 2.28 1.48 4.58 2.84 2.08 1.63 
BS Replication 500 500 500 500 500 500 500 500 500 500 500 500 

N
=1

0,
00

0 

BS Sample Size 100 300 500 1000 100 300 500 1000 100 300 500 1000 
 

Table 7: Coefficient of Variation of Estimated Total in a Low-Mean Poisson Population: 
Po(10) 

P-Value ( ̂ ) <.0001 <.0001 <.0001 <.0001 0.0441 0.0441 0.0441 0.0441 0.3454 0.3454 0.3454 0.3454 
Sampling Rate 1% 3% 5% 10% 1% 3% 5% 10% 1% 3% 5% 10% 
Sample 1 0.02 0.04 0.05 0.09 0.02 0.03 0.04 0.07 0.02 0.02 0.03 0.08 
Sample 2 0.01 0.01 0.01 0.04 0.01 0.01 0.02 0.03 0.01 0.01 0.01 0.03 
Sample 3 0.01 0.01 0.03 0.04 0.01 0.02 0.02 0.04 0.01 0.02 0.02 0.04 
Sample 4 0.03 0.05 0.28 0.10 0.07 0.05 0.07 0.12 0.02 0.03 0.06 0.10 
Design-SRS 7.37 6.14 4.61 2.60 9.84 6.06 4.28 3.37 11.39 5.66 4.99 0.98 
BS Replication 500 500 500 500 500 500 500 500 500 500 500 500 

N
=1

,0
00

 

BS Sample Size 10 30 50 100 10 30 50 100 10 30 50 100 
              

P-Value ( ̂ ) <0.0001 <0.0001 <0.0001 <0.0001 0.0202 0.0202 0.0202 0.0202 0.5415 0.5415 0.5415 0.5415 
Sampling Rate 1% 3% 5% 10% 1% 3% 5% 10% 1% 3% 5% 10% 
Sample 1 0.01 0.01 0.02 0.03 0.00 0.01 0.01 0.02 0.00 0.01 0.01 0.02 
Sample 2 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 
Sample 3 0.00 0.00 0.01 0.02 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01 
Sample 4 0.01 0.02 0.03 0.05 0.00 0.01 0.02 0.03 0.00 0.01 0.01 0.03 
Design-SRS 3.56 18.47 13.88 0.98 3.14 1.83 1.39 0.95 33.77 1.91 0.06 0.99 
BS Replication 500 500 500 500 500 500 500 500 500 500 500 500 

N
=1

0,
00

0 

BS Sample Size 100 300 500 1000 100 300 500 1000 100 300 500 1000 
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Table 8: Coefficient of Variation of Estimated Total in a High-Mean Poisson Population: 
Po(100) 

P-Value ( ̂ ) 0.0009 0.0009 0.0009 0.0009 0.0322 0.0322 0.0322 0.0322 0.6200 0.6200 0.6200 0.6200 
Sampling Rate 1% 3% 5% 10% 1% 3% 5% 10% 1% 3% 5% 10% 
Sample 1 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.02 0.00 0.01 0.01 0.02 
Sample 2 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 
Sample 3 0.01 0.00 0.01 0.02 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.02 
Sample 4 0.01 0.01 0.02 0.04 0.01 0.01 0.02 0.04 0.01 0.01 0.02 0.03 
Design-SRS 2.34 20.91 1.53 1.00 2.61 2.60 0.19 1.11 7.52 1.89 1.42 0.97 
BS Replication 500 500 500 500 500 500 500 500 500 500 500 500 

N
=1

,0
00

 

BS Sample Size 10 30 50 100 10 30 50 100 10 30 50 100 
              

P-Value ( ̂ ) <0.0001 <0.0001 <0.0001 <0.0001 0.0159 0.0159 0.0159 0.0159 0.7251 0.7251 0.7251 0.7251 
Sampling Rate 1% 3% 5% 10% 1% 3% 5% 10% 1% 3% 5% 10% 
Sample 1 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 
Sample 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Sample 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Sample 4 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01 
Design-SRS 1.02 0.56 0.43 0.29 1.00 0.55 0.43 0.30 0.97 0.57 0.44 0.30 
BS Replication 500 500 500 500 500 500 500 500 500 500 500 500 

N
=1

0,
00

0 

BS Sample Size 100 300 500 1000 100 300 500 1000 100 300 500 1000 
 

 


