Impact of the Rice Trade Policy Reforms on Household Welfare in the Philippines

by

Alellie B. Sobrevinas

and

Erniel B. Barrios (Correspondence)

UPSS Working Paper No. 2009-07
July 2009

School of Statistics
Ramon Magsaysay Avenue
U.P. Diliman, Quezon City
Telefax: 928-08-81
Email: updstat@yahoo.com
Impact of the Rice Trade Policy Reforms on Household Welfare in the Philippines

Alellie B. Sobrevinas
Research Associate
PEP-CBMS Network
Angelo King Institute for Economic and Business Studies

Erniel B. Barrios (Correspondence)
Professor, School of Statistics
University of the Philippines Diliman

Abstract

The effects of rice trade policy reforms on household welfare as indicated by changes in consumer and producer prices are analyzed using nonparametric regression and density estimation. Since many households in the Philippines are consumers and producers of rice, we used net benefit ratio (NBR) to measure the change in household welfare given changes in prices. The impact of a policy change is not the same across different groups of households. Varying welfare effects should, therefore, be considered in designing policy interventions. Among the different rice trade policy scenarios, the elimination of quantitative restriction and full tariff reduction can lead to highest gains in household welfare in the long-run.

Keywords: rice trade policy, household welfare, net benefit ratio, nonparametric analysis

1. Introduction

Trade liberalization has been one of the most important topics of development in the context of globalization. In the Philippines, rice is the most important agricultural crop and rice trade liberalization is both a political and economic issue. Rice is the staple food of more than 90 percent of households and the main source of livelihood of millions of farmers. The
government intervene using policy instruments like quantitative restrictions (QR), in order to influence domestic prices of rice and consequently affect household welfare. The QR sets a limit in the volume of rice imports which may enter the country and thereby, protect the domestic rice sector from the inflow of imported rice varieties. It can also artificially create a ‘scarcity rent’ which increases the local price of rice. Limiting the imports below the free trade level can result in an increase in consumer prices while domestic producers are protected against low international prices.

Rice is currently the only commodity in the country which is exempted from the removal of QR under Annex 5 of the World Trade Organization (WTO) agreement. The WTO approved the request of the Philippines in December 2006 to further extend its special treatment on rice until 2012. An in-depth study that would help determine the possible impact of related policies is, therefore, very important to help decision makers in designing and prioritizing interventions.

This study aims to analyze the possible impact of changes in rice trade policies on household welfare using nonparametric techniques. The effects of policy reforms on household welfare is analysed in terms of changes in producer and consumer prices. The winners and losers of these policies are identified by comparing the results among different groups of households where groupings are based on income, level of urbanization and geographical location.
3. Data and Methods of Analysis

This study employs nonparametric approach in determining the impact of policy reforms through price changes. This allows us to extract the rich information from the household data with minimum structural/model assumptions. A comparison of the effects of rice price changes brought about by the changes in policy is conducted based on the household’s level of income, urbanization (rural vs. urban) and geographical location (16 regions).

3.1 Data Used

This study utilized household level data from the 2000 Family Income and Expenditures Survey (FIES) of the Philippines. The survey adopted a multi-stage stratified random sampling technique with barangay (smallest political subdivision in the country) as the primary sampling units. A total of 39,615 interviews distributed across different regions in the Philippines (Table 1) were completed.

[Table 1 Here]

The following indicators are used in analyzing the welfare effects of price changes on different segments of the households.

a. Net Benefit Ratio (NBR): the value of net sales as a proportion of income

b. Per capita expenditure\(^1\) (PCE): measure of household living standards; measured as the total household expenditure divided by the number of persons in the household

c. Rice budget share (RBSHARE): the share of rice expenditures to total budget; the second term in the NBR formula

\(^1\) In the literature, household expenditures, instead of income, is commonly used as a measure of household living standards due to life-cycle considerations. Expenditure is a more reliable measure of living standards since it can be “smoothed” by the households in case they experience shocks while household income may vary from year to year.
d. **Producer** (*PROD*): indicates whether a household produces rice (*PROD*=1) or not (*PROD*=0)

e. **Seller** (*SELL*): characterizes whether a household sells rice (*SELL*=1) or not (*SELL*=0)

3.2 Net Benefit Ratio (*NBR*)

The impact of rice trade policies on household welfare is assessed through movements in rice prices. The effects of these changes on real income vary depending on whether a household is a net producer or a net consumer. Thus, examining how the net positions (i.e., magnitude of net sales or purchases) of households vary across income distribution would also help in determining which groups of households are expected to gain or lose from rice price changes (Budd, 1993).

To capture duality (i.e., both producer and consumer of rice) of households in the Philippines, the net benefit ratio (*NBR*), as defined by Deaton (1989) is computed for each household. As such, *NBR* is used as the main indicator of change in household welfare given a change in price. Note that this ratio has the desirable property of being a unitless measure. In simple terms, *NBR* is the value of net sales of rice as a proportion of income. The value of *NBR* is expected to be positive for net producers/net sellers of rice and negative for those who are net consumers. Given an increase in rice prices, net producers will gain while net consumers will lose while the opposite would be true in case of a decrease in prices. The behavior of *NBR* across income distribution reflects how a change in prices affects households across income distribution.
3.3 Parametric vs. Nonparametric Approach

In economic theory, it is very rare that a specific functional form is defined. In fact, what is common is that a collection of potentially related variables and general functional properties of the relationship are specified. Even if economic theory only provides loose restrictions on the distribution of the observable quantities, much work is based on tightly specified parametric models and likelihood-based methods of inference. Hardle and Linton (1994) noted that there is a considerable cost associated with imposing the strong restrictions required for parametric methods. Contrary to parametric modeling, nonparametric approach allows the data to determine the shape and relationships among the variables. It reduces the possible biases of parametric models by fitting a larger class of models. As such, it allows data to search the appropriate nonlinear forms that best describe the data (Fan, 2000).

One major advantage of nonparametric techniques is their ability to deliver estimators and inference procedures which are less dependent on functional forms. They are also very useful in exploratory data analysis and supplement parametric procedures (Yatchew, 1998). Nonparametric techniques are more appealing since it provides richer families of functions as well as more robust test in assessing the implications of economic theory. DiNardo and Tobias (2001) used local linear regression, a flexible method that estimated the function f from the model $y_i = f(x_i) + \varepsilon_i$. This generalizes the standard linear regression model that assumed $f(x_i) = x_i \beta$.
3.4 Price Effects of Different Trade Policy Scenarios

The price effects of the different trade policy scenarios are important tools in policy analysis since the effect of rice trade liberalization on prices depends on the extent to which trade is liberalized. We compare and analyze the different trade reform scenarios as they affect consumer and producer prices and thus, household welfare. The price effects of these scenarios are based on the results of the simulations conducted by Cororaton (2006)\(^2\) using a Computable General Equilibrium (CGE) model for the Philippines. He estimated that provided the Doha Development Agenda (DDA) is implemented, different policy scenarios would result to changes in consumer and producer prices in the long-run as shown in Table 2. It is important to highlight that the elimination of QR could result to the largest reduction in rice prices.

[Table 2 Here]

4. Results and Discussion

The first section focuses the discussion on how income is distributed based on geographical location and level of urbanization. The rice consumption and production patterns of different household groups are analyzed in the succeeding sections. Note that the impact of any policy

\(^2\) Cororaton examined the effects of trade reforms on poverty based on the results of the Global Trade Analysis Project (GTAP) by Hertel, et.al (1997) and using a static one-period Philippine CGE Model. He conducted a number of experiments to analyze various combinations of DDA and free world trade with Philippine trade reform. The DDA for multilateral negotiations, which was launched by the members of the WTO in 2001, covers reduction of agricultural support policies, market access liberalization for goods and services as well as strengthening of WTO rules and dispute settlement procedures.
reform on a particular household can vary depending on the importance of rice for the household. If rice is not important in terms of expenditure or income, a price change is less likely to concern a household significantly. On the other hand, if rice is the primary source of income or the major item in the expenditure side, a change in rice prices may seriously affect a household’s welfare. The final two sections are devoted in examining the patterns of net benefit ratio (NBR). Instead of merely focusing on the direction of change, a comparison of the expected magnitudes of the effects of different rice trade policy scenarios on household welfare is also presented.

4.1 Distribution of Income

To analyze the impact of policy changes across different living standards and geographical location, it is important to examine the income distribution itself in both urban and rural household groups as measured by per capita expenditure (PCE). An analysis of the regional inequalities in living standards is also important in understanding the likely differences in the effects of trade policy reforms based on geographical location. Results reveal the disparities in living standards across all regions in the Philippines (Figure 3). Ignoring price differences, NCR has the highest average living standards across all regions with an average annual PCE of P52,949, more than thrice that of ARMM which has an average annual PCE of P14,408 for all households. Note also that urban households in regions similar to NCR (i.e., Southern Luzon and CAR) generally have higher living standards compared to those in other regions. In particular, the average PCEs of urban households in Southern Luzon and CAR are more than twice as large as those in ARMM.

[Figure 3 Here]
In the case of rural households, the living standards of those in Central Luzon and Southern Luzon are relatively higher compared to other regions in the country. The average rural households in Central Luzon have 94.0 percent higher PCE than those in ARMM while those in Southern Luzon are 79.0 percent higher than its ARMM counterpart. These further confirm the presence of inequalities in living standards across regions in the Philippines. Furthermore, Figure 4 highlights how living standard is distributed across households in urban and rural areas. The height of the curve corresponds to the number of observations that fall into the band. Urban households have higher living standards compared to rural households. The modal PCE for urban households is higher compared to the mode for rural households, common among developing countries like the Philippines. The long upper tail of the distribution demonstrates the presence of extremely rich households and illustrates the existence of inequality predominantly within urban households. Table 3 also show that urban households have an average PCE of P32,446, about than twice the average PCE of rural households. There is however, a wider variation in PCE for urban households as reflected in the different measures of dispersion. The coefficient of variation for urban households is about 1.26, which is higher compared to rural households (1.08).

As of 2000, the poverty incidence in the Philippines is estimated at 29.2 percent. There is a big disparity in poverty incidence between the urban areas (17.0 percent) and the rural areas (47.1 percent). Among the regions, ARMM that is predominantly rural hosted the most number of poor households. It is indeed evident that rural poverty is more widespread than urban poverty. Rice farmers accounting for more than a quarter of the Philippine population
have a poverty rate of 41.1 percent compared to 27.1 percent for non-rice farmers. This further exhibited the vulnerability of rural households, the rice farmers specifically.

4.2 Rice Consumption Patterns

The 2000 FIES estimates that rice is consumed by more than 90.0 percent of households in the Philippines and is allocated with 24.0 percent of the total household expenditures in 2000. The average annual per capita rice consumption level is estimated to be 116 kilograms. There is also a great deal of variation across different household segments on the importance of rice in their budget and hence, of the extent to which households are affected by changes in prices. The average rural household in the Philippines spends more for rice consumption out of its total budget compared to the urban households (Table 4). Furthermore, Figure 5 shows that the average household in Eastern Visayas (dominantly rural) has the highest share of budget allotted to rice while an average household in NCR (all urban) has the least share of budget to rice. In general, the average RBSHARE in NCR is significantly less than in other regions. The constraints imposed by the demands of commuting to place of work and other lifestyle habits force some residents in NCR to cut consumption of milled rice and replace it with other products (more handy) such as bread and other cereal products (e.g., noodles, bread, cookies and crackers). The growth of fast-food industry must have also affected the rice consumption patterns of NCR households (Ignacio, 2005). Urban households in regions similar to NCR, including CAR and Southern Luzon, are following almost the same pattern of rice consumption.

[Table 4 Here]
Figure 6 exhibits the joint density of rice budget share and PCE for rural and urban areas. These contours are parallel to the smoothed histograms in a three-dimensional view. The heights of the histograms are the fraction of households at the levels of PCE and RBSHARE represented by the coordinates at the base. Thus, the points which are linked by a contour have the same density. The contour plots show that RBSHARE is generally higher for rural households as compared to urban households. In addition, it is clearly shown that urban households generally have higher PCE than those in the rural areas. The figure also illustrates the disparities within households living in rural areas. For example, among rural households with PCE of less than P10,000, there are segments whose RBSHARE is as low as 2.0 percent and as high as 20.0 percent. Similar variation in RBSHARE is also true for urban households. Note that there are smaller contours which lie separately from the major contours, especially for rural households. These represent the ‘outliers’ with respect to the main distribution. Figure 7 provides a different perspective of the same data in Figure 6 showing the relative heights and concentration of mass.

The nonparametric regression of RBSHARE on PCE in rural and urban areas in Figure 8 also confirms that given the same level of living standards, RBSHARE is higher among rural households than those in the urban areas, particularly for those at the middle of the income distribution. We cannot however, directly conclude that this may be due to price differences or other factors related to urbanization. The generally downward sloping curves for both groups of households confirm Engel’s law that the RBSHARE decreases as living standards
rise. The richest households allotted a considerably smaller proportion of their budget to rice compared to other households. However, in absolute terms, the amount they spend on rice may exceed those of the poorest households. The poor households which are at the bottom of the expenditure distribution show a very interesting pattern. For households with very low levels of income, the share of rice consumption increases with income until a certain level where the share of rice to total budget begins to drop. This pattern is clearly seen for both urban and rural household but more especially for the latter group. Although this can be possibly due to the fact that there is lesser number of observations for this extremely low income range, it also provides important information on rice consumption patterns of this group of households. This may imply that the poorest households are consuming other cereal products (e.g., instant noodles) or are eating less rice because they cannot afford it and some may even be suffering hunger. For this group of households, a unit increase in income would tend to increase their consumption of rice and hence, share of rice to total expenditures becomes larger. At the other end of the distribution, however, a flatter curve is observed for both rural and urban groups reflecting lower expenditure elasticity for richer households. This means that the share of rice to total budget does not change significantly as households become very rich.

[Figure 8 Here]

Figure 8 also demonstrates the welfare effects of price changes which operate through consumption. For instance, if farmers continue to receive the same price for production, but consumer prices decrease, the poorest households will gain more as compared to the richest households. In addition, those rural households near the edge of the poverty threshold and are
highly vulnerable can experience either positive or negative effects. Although all of these results do not consider the possible response of the household’s budget share to the change in price, it is expected that the responses of the different household income groups would not vary much. Therefore, the distribution effects of price change may not be affected (Deaton, 1997).

4.3 Rice Production Patterns

We then examine rice production patterns and isolate the effects of changes in producer prices on household welfare. Results of the 2000 FIES reveal that, rural farmers produced an average of P34,783 worth of rice annually (Table 5). For rural farmers, income from rice production is about 50.8 percent of their annual total household income (expenditures). In the case of urban households, rice income share is generally less than that of rural households except for CAR and ARMM. Based on the average production, the two major rice producing regions are Central Luzon and Cagayan Valley.

[Table 5 Here]

Table 6 shows the proportion of rice producers and sellers across different regions in the Philippines. About 16.3 percent of households in the country are involved in rice production and a majority of them (i.e., 96.7%) sell their rice produce. The highest proportion of rice producers in a particular region are recorded for Cagayan Valley (38.6%), Ilocos Region (37.2%) and CAR (36.7%). Almost all of the rice producers in Cagayan Valley (99.9%) sell their rice produce. Although Central Luzon is considered to be one of the major rice-producing regions in terms of value of production, there is a lower proportion of rice
producers in the region compared to other regions. This means that most of the rice producers in the area are operating on a large scale (i.e., relatively rich households).

In understanding the role of rice production income and how individual household is affected by price changes, it is important to examine who produces and who sells rice. Figure 9 exhibits the estimates of the proportion of producers and sellers in rural and urban areas as a function of PCE. The solid line represents the proportion of households involved in producing rice while the broken lines stand for those who sell rice. As expected, the graphs show that the probability of being a producer is significantly higher in rural areas than in urban areas.

[Table 6 Here]

[Figure 9 Here]

The pattern in rural areas show that the proportion of households that produce rice increases up to a certain point and then declines, increases again, sharply towards the richest households where it reaches nearly 100 percent. In addition, the probability of being a seller is higher for rich households due to the fact that rich farmers in rural areas usually produce rice on a large scale and hence, can afford to sell more. On the other hand, the probability of being a producer in urban areas increases up to a certain level before it declines. This shows that there is less probability that middle-income and rich households are engaged in rice production since they have more opportunities to be involved in other economic activities and do not need to rely on rice production income. Thus, the probability of being a seller in urban areas is very small to the middle-income and rich households. Although there are only a few farmers in the urban areas (7.0%), nearly all middle-income and rich farmers are selling their rice
produce (Table 7). In general, about 96.7 percent of rice producers sell rice while the remaining 3.6 percent do not sell their produce.

[Table 7 Here]

The entire rice farming sector will be negatively affected by a decrease in producer prices, but note that there are varying effects on each farmer group. For the rural areas, the decrease in farm prices means that a large proportion of farmers can suffer since many of them are rice producers (27.7%) and a majority (about 96.4%) actually sell their rice produce. Since poor farmers rely heavily on rice production as their major source of income, the magnitude of impact of price changes is expected to be more severe³. In the case of urban areas, since the probability of being a producer and a seller is very small, they are not greatly affected by the decrease in producer prices as a whole. However, since nearly all urban rich farmers are net sellers, they are also expected to lose from such price changes.

Given the relatively higher proportion of rice producers in the rural areas as compared to urban areas, to examine regional variations, we focus on rural households. In Central Luzon which is one of the major rice producing regions in terms of volume of production, the probability of being a producer is roughly the same for the poor and middle-income farmers. The presence of very rich farmers is also notable and has higher probability of being a producer and a seller. In general, nearly all farmers in the region are net sellers of rice. On the other hand, Cagayan Valley, which is another major rice producing region, shows a seemingly different pattern. In fact, it is shown that there are more poor households engaged in rice production as compared to the rich households.

³ It is important to note that in the Philippines, tenancy rates remain to be high (i.e., 50%-70% as of 1997). Ownership of land is still concentrated among a few whose major concern is controlling the use of their land and securing political power in the rural areas.
In Bicol Region, as households become richer, the probability of being a rice producer (and also of being a net seller) is increasing. However, in CAR, Central Visayas, Eastern Visayas and Western Mindanao, the probability of being a rice producer is relatively higher for poor households. In addition, since most of the households are not net sellers of rice, a decrease in rice farm prices may not have significant effects on their welfare, holding other factors constant. In general, a relatively small proportion of households in Southern Luzon, Central Visayas, Northern Mindanao, and Southern Mindanao are rice producers. Households in Northern Mindanao have very small probability of being a rice producer because farm households in the region are mostly involved in corn production rather than rice production. A change in producer prices may not create a significant impact on the welfare of the households in the region. The pattern for Southern Mindanao is also quite interesting and different compared to other regions. Although the probability of being a producer is higher for the richest households in the region, a majority of them are not net sellers of rice.

4.4 Net Benefit Ratios

The previous sections focus on rice consumption and rice production patterns separately. A more complete examination needs to incorporate both supply and demand side of rice. The welfare effects of rice price changes largely depend on households’ behaviour with respect to the production, consumption, sales and purchases of rice. Hence, the net benefit ratio (NBR) is analyzed to determine the impact of price changes (resulting from policy reforms) on household welfare. For all households, 81.1 percent are net consumers and 14.8 percent are net sellers of rice (Table 8). The remaining 4.1 percent of the households are along the equality of production and consumption level, hence, have NBRs equal to zero. In urban
areas, about 92.8 percent of households are net buyers of rice while only 5.5 percent are net sellers. This pattern is also true among rural areas where a large proportion of the households are considered net buyers. About 71.5 percent of rural households are net buyers while 21.0 percent are net sellers. The presence of very few net sellers further supports the evidence that the Philippines is not rice self sufficient. This also means that an increase in rice retail prices will result to welfare losses, holding other factors constant. On the other hand, a decrease in prices would generally benefit more households in both urban and rural areas.

[Table 8 Here]

[Figure 10 Here]

Figure 10 shows the bivariate density contours of NBR and PCE for urban and rural households. The horizontal line represents the net purchase line which divides net buyers and net sellers. Based on the pattern across living standards, it is clear that most households, either in rural or urban areas are net buyers of rice. Note that there are more net buyers in the middle part of the income distribution. This means that there are more middle-income households which could suffer more from an increase in domestic prices compared to the other group of households. On the other hand, households would have higher benefits if there is a decrease in rice prices, holding other factors constant. The nonparametric regression of NBR with respect to PCE also shows that all households across different income levels are expected to be net buyers of rice given the negative NBRs (Figure 11).

An assessment of the different household groups based on income deciles would show that households at the lowest income decile allot the largest proportion (18.8%) of their budget for rice (Table 9). The RBSHARE decreases as household move from a lower decile to a higher
decile. This means that only a smaller proportion of the budget of richer households goes to rice. In terms of production, around 50.0 percent of income of rice producers comes from rice production. Households at the middle of the income distribution generally have the highest rice income share.

The largest proportion of consumers is recorded for those at the highest income decile. About 72.2 percent of households in the second decile are net consumers while 89.8 percent of households in the tenth decile are net buyers. The largest proportion of net sellers, on the other hand, is reported for those at the second (15.1%) and third decile (14.9%). Although the average NBRs remain to be negative, there is an increasing trend as households move from one decile to a higher decile (Figure 12). Hence, given an increase in rice prices, richer households benefit more as compared to poorer households. A decrease in prices would lead to opposite results, holding other factors constant.

When results are disaggregated by level of urbanization, it is clear that NBRs for urban households are lower than those of rural households implying that there are more net buyers in urban areas than in rural areas (Figure 13). Similarly, there are more net sellers in rural areas than in urban areas. The regression model for urban households is generally below the zero NBR line, except for a few relatively poor households. On the average, urban households are expected to be net buyers and hence, lose from an increase in consumer prices of rice but benefit from a decrease in prices. The graph also shows that since the poorest urban households have higher net purchases of rice relative to other households in urban areas, they may lose from an increase in prices but benefit when there are lower prices. The regression
model for rural households shows a different pattern such that a positive slope is observed in the lower-income portion of the distribution. This trend continues up to a certain level at the middle part of the distribution and then, the slope becomes negative for the upper end until it becomes flat. This structure implies that the poorest households in the rural areas generally benefit from higher prices of rice. It is important to highlight that the middle-income group has the highest NBRs implying that they are the ones who would benefit more given an increase in prices.

4.5 Simulating Net Benefit Ratio from Different Rice Trade Policy Scenarios

We presented in the previous sections the direction of the possible impact of an increase or decrease in price of rice. We now compare the magnitudes of benefits or losses among different rice trade policy scenarios resulting in different levels of price changes. Note that the immediate effect of the removal of QR is scaling up of tariff and therefore, assuming full price transmission, domestic prices of rice will increase proportionately. Since poor households are more vulnerable, they would experience negative effects in the short-run. In addition, since most households in urban areas are net consumers of rice, their welfare losses are greater as compared to rural households.

This section focuses on the three rice trade reform scenarios presented earlier in Table 2 which are adopted from the results of the CGE Model developed by Cororaton (2004). We analyzes in this section the impact of simultaneous changes in producer and consumer prices of rice. The impact on household welfare is analyzed based on the net benefit ratios for different scenarios. In Table 10, if the Philippines continues to implement its existing trade
policy (Scenario 1), there would be potential welfare losses due to increase in both consumer and producer prices of rice. However, implementing trade reforms would be beneficial, particularly the elimination of QR and full tariff reduction (Scenario 3). This would result to a higher gain in welfare than simply reduction of tariff across sectors (Scenario 2). The gain from Scenario 3 is more than thrice as large as the gain from Scenario 2. This implies that the removal of rice QR would create greater impact on household welfare. The decrease in prices resulting from such policy change is beneficial since a majority of households in the Philippines are net consumers. The lower rice prices is favourable to consumers because it increases real consumption and at the same time, reduces the nominal value of the poverty threshold.

The higher welfare gain from Scenario 3 remains true even if we disaggregate the results by urbanity. However, rural households are more significantly affected by changes in prices as compared with urban households. Scenario 3 will lead to about 18.9 percent increase in welfare for rural households while those in the urban areas will increase welfare by only about 12.7 percent. These figures are relatively higher compared to the effects of Scenario 2 which will result in welfare gains of about 8.2 percent and 3.5 percent for rural and urban households, respectively. In case of Scenario 1, welfare losses are also higher for households in the rural areas than those in urban areas. The results also clearly reflect that Scenario 3 would be the most beneficial option for rural households.

At the regional level, the results for CAR are notable. Unlike in other regions, Scenarios 2 and 3 will lead to relatively huge welfare losses while Scenario 1 will result to welfare gains. This is explained by the fact that almost all farmers, especially in the rural areas in CAR, are net
sellers of rice. On the other hand, the gains from Scenario 2 and 3 are largest for Central Mindanao. Central Mindanao does not experience huge losses because lower prices would adversely affect only a few producer households in the region while benefiting a larger proportion of consumers. This is also be related to the fact that the region is one of the corn-producing regions in the country.

Looking at the effect by different income groups, the magnitude of impact on poor households, in general, is smaller compared to other households. The same relationships are observed for the three scenarios. Clearly, the benefits of rice trade policy reforms as in Scenario 2 and 3 would accrue mainly to middle-income households. As such, the benefits to the poorest and richest households are slightly lower. In addition, if the Philippines would not change its existing rice trade policies, it is clear that all household income groups would generally suffer from welfare losses. It is also very important to highlight that if no trade reforms are implemented, the middle-income households would remain to have the highest welfare losses compared to other group of households.

The disaggregation by income decile shows further that the greatest welfare effects will be observed when there is full tariff reduction and removal of QR. This also confirms that households at the middle of the income distribution, particular those at fourth to sixth income deciles are the ones who will be affected the most. In particular, in case the Philippines does not implement any trade reforms, it is clear that this group of households will experience the greatest negative effects. On the other hand, if the country decides to implement reforms, most of the benefits will accrue to middle-income households. Despite the uneven distribution of benefits, it is important to highlight that, among the three trade reform scenarios, the most
beneficial policy for the Philippines in the long-run would be the elimination of rice QR and full tariff reduction.

[Table 10 Here]

5. Conclusions and Policy Recommendations

This paper aimed to analyze the effects of rice trade policy reforms on household welfare via changes in consumer and producer prices and using nonparametric methods. The nonparametric approach relaxes the issue on restrictiveness of the functional form of the relationship between the variables. It should also be noted that one of the challenges in using nonparametric techniques is the selection of the bandwidth and the curse of dimensionality. Thus, the technique may not be useful in small samples since smoothing tends to be more useful with large amounts of data. Despite some limitations, this study was able to demonstrate the usefulness of nonparametric techniques in extracting more information from economic survey data with minimum structural/model assumptions.

The benefits of rice trade policy reforms are not the same for all households, making it necessary for the government to consider the distributional effects of any policy change. The aggregate macroeconomic effect may be misleading as it cannot illuminate the welfare effects among the most vulnerable segments. Effects vary by geographical location, by urbanity and by income group. Rice budget share is higher for poor households compared to nonpoor households. Furthermore, rice production is more common among rural households. The presence of very few net sellers in the Philippines, as reflected in the net benefit ratio, supports the evidence that the country is still not rice self-sufficient. Hence, the government
should address this by providing programs that would improve farm productivity and encourage moving out of subsistence rice farming. In designing specific interventions, the differences in the potential impact should always be considered. Insufficiency in rice production can be caused by lower productivity that can be traced to the inappropriate soil system in many producing areas. Hence, an important provision of the Agriculture and Fisheries Modernization Act (AFMA) requiring the identification of production zones for different crops should be implemented. Lower productivity may also be explained by the inefficiency among farmers in accessing factors of production due to the perennial practice of the government of dole-out distribution of production inputs instead of merely facilitating farmer’s access to such.

When comparing the results of different rice trade policy scenarios, it is evident that the elimination of QR and full tariff reduction would lead to the largest percentage decrease in consumer and producer prices. This scenario also provides the highest gain in welfare among three scenarios in the long-run. In fact, the gain is significantly higher compared to simply reducing tariff across sectors, which reflects the potentially great impact of the removal of QR. Although it is quite clear that poor households are expected to benefit from the removal of QR and full tariff reduction in the long-run, the benefit for the income poor households is slightly less than the middle-income households.

One critical issue that is often argued is that while opening the domestic rice market is beneficial in the long-run, the poor usually bear the burden of adjustment in the short-term. About one-third of households in the Philippines are living below poverty line, a majority of which are net consumers of rice. It is expected that the Philippines can generally experience
negative welfare effects due to increases in rice prices at the initial stage of rice tariffication. Although the increase in prices can raise the gross income of farmers who sell rice, the small farmers and poor households who are mostly net buyers of rice may suffer an immediate decline in welfare in the short run. If removal of QR is done without ensuring stability of farmers’ income, it would result to welfare losses, especially for poor households who greatly depend on rice farming as the main source of livelihood. Since poor farmers are likely to be less able to cope with shocks in the short-run as compared with big farmers, policy measures should ensure that they are provided the necessary assistance to compensate for the immediate negative effects.

It is also important to highlight that the potential benefits due to rice trade liberalization cannot be translated into actual gains unless the necessary conditions are in place. The further extension of the special treatment of rice in the Philippines should only provide enough time and opportunity for rice farmers and especially for the government to do their part in preparing for full rice trade liberalization by improving the farmer’s efficiency and competitiveness. The previous failure of the government to fulfil its promise of preparing the rice sector for global competition is due to budgetary constraints coupled with inaccurate allocation which prevent them from providing sufficient and appropriate support for the sector. This time, the government should have a strong political will and commitment to extend support to the rice sector by providing sufficient funds to finance appropriate programs for the sector. Investing in infrastructures, such as good irrigation, farm-to-market roads, and extension services, even before reforms are initiated would help prepare the rice sector for trade liberalization. Efficient infrastructure is also important so that consumers can realize the
full benefits of cheaper rice and not confined mainly to urban and nearby areas. Significant gains in a developing country, like the Philippines, can also be realized if it implements reforms that would provide an environment that allows movements of capital and labor across sectors. Improving the investment climate is important in order to allow the creation of new economic opportunities. The government should also be able to improve its capacity to redistribute the local benefits from the trade reforms. One specific issue that the Philippine government should also address is with regards to its rigorous requirements for importation which may be left mainly to those who have the ability or the power to fulfil them. Another issue that always comes out relates to the presence of key players who are able to capitalize and have the power on more profit opportunities within the rice industry. Thus, this potential for collusion should also be addressed by the government.

Finally, despite the potential benefits of trade reforms and more particularly, the removal of QRs, it is generally recognized that there will always be losers and winners in any policy change. Hence, the potential distributional impact should always be considered. Like all other countries involved in the process of trade liberalization, the Philippines must incur some costs. However, we should realize that the costs associated with these reforms are temporary but the benefits through better resource allocation are permanent and even exceed the temporary costs. Therefore, these costs should not prevent a country to pursue trade liberalization but should rather be considered an essential investment to earn benefits in the long-run. The effectiveness of any policy, including the compensatory policy reforms, greatly depends on the government’s capacity to enforce it.
REFERENCES

Figure 1. Average Per Capita Expenditure (PCE) 2000 (By Region, Urbanity)

Source of Basic Data: 2000 Family Income and Expenditures Survey

Figure 2. Estimated Density Functions of PCE in Urban and Rural Areas (2000)

Note: PCE in thousand pesos
Source of Basic Data: 2000 Family Income and Expenditures Survey
Figure 3. Average Budget Share of Rice in Urban and Rural Areas (2000)

Source of Basic Data: 2000 Family Income and Expenditures Survey

Figure 4. Bivariate Density Contours of RBSHARE and PCE in Rural and Urban Areas (2000)

A. RURAL

B. URBAN

Note: PCE in thousand pesos
Source of basic data: 2000 FIES, NSO
Figure 5. Bivariate Densities of RBSHARE and PCE in Rural and Urban Areas (2000)

A. RURAL

B. URBAN

Note: PCE in thousand pesos
Source of basic data: 2000 FIES, NSO

Figure 6. Nonparametric Regression of RBSHARE and lnPCE in Rural and Urban Areas

Source of Basic Data: 2000 Family Income and Expenditures Survey
Figure 7. Probability of Being a Producer and Net Seller in Rural and Urban Areas (2000)

A. RURAL

B. URBAN

Source of Basic Data: 2000 Family Income and Expenditures Survey

Figure 8. Distribution of NBR Across Different Levels of Living Standards in Rural and Urban Areas (2000)

A. RURAL

B. URBAN

Note: PCE in thousand pesos
Source of Basic Data: 2000 Family Income and Expenditures Survey

Figure 9. Nonparametric Regression of NBR and PCE in All Households
Figure 10. Nonparametric Regression of NBR and National Income Decile

Source of Basic Data: 2000 Family Income and Expenditures Survey
Figure 11. Nonparametric Regression of NBR and PCE in Rural and Urban Areas

Table 1. Distribution of Sample Households for 2000 FIES

<table>
<thead>
<tr>
<th>Region</th>
<th>ALL</th>
<th>Urban (%)</th>
<th>Rural (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHILIPPINES</td>
<td>39,615</td>
<td>59</td>
<td>41</td>
</tr>
<tr>
<td>1. Ilocos Region</td>
<td>1,887</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>2. Cagayan Valley</td>
<td>1,561</td>
<td>36</td>
<td>64</td>
</tr>
<tr>
<td>3. Central Luzon</td>
<td>3,770</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>4. Southern Luzon</td>
<td>6,168</td>
<td>65</td>
<td>35</td>
</tr>
<tr>
<td>5. Bicol Region</td>
<td>2,099</td>
<td>47</td>
<td>53</td>
</tr>
<tr>
<td>6. Western Visayas</td>
<td>3,014</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>7. Central Visayas</td>
<td>2,333</td>
<td>59</td>
<td>41</td>
</tr>
<tr>
<td>8. Eastern Visayas</td>
<td>2,252</td>
<td>52</td>
<td>48</td>
</tr>
<tr>
<td>9. Western Mindanao</td>
<td>1,678</td>
<td>41</td>
<td>59</td>
</tr>
<tr>
<td>10. Northern Mindanao</td>
<td>2,005</td>
<td>58</td>
<td>42</td>
</tr>
<tr>
<td>11. Southern Mindanao</td>
<td>2,032</td>
<td>59</td>
<td>41</td>
</tr>
<tr>
<td>12. Central Mindanao</td>
<td>1,706</td>
<td>48</td>
<td>52</td>
</tr>
<tr>
<td>13. National Capital Region (NCR)</td>
<td>4,141</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>14. Cordillera Administrative Region (CAR)</td>
<td>1,662</td>
<td>44</td>
<td>56</td>
</tr>
<tr>
<td>15. Autonomous Region of Muslim Mindanao (ARMM)</td>
<td>1,817</td>
<td>33</td>
<td>67</td>
</tr>
<tr>
<td>16. CARAGA</td>
<td>1,490</td>
<td>53</td>
<td>47</td>
</tr>
</tbody>
</table>

Source: National Statistics Office
Table 2. Price Changes in Scenarios of Trade Reforms (Based on CGE Model)

<table>
<thead>
<tr>
<th>SCENARIO</th>
<th>% Δ in consumer prices of rice</th>
<th>% Δ in producer prices of rice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. no changes in Philippine trade policy</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>2. full reduction in tariffs across sectors</td>
<td>-2.0</td>
<td>-3.0</td>
</tr>
<tr>
<td>3. elimination of QR and full reduction in tariffs</td>
<td>-10.8</td>
<td>-12.1</td>
</tr>
</tbody>
</table>

Note: The consumer and producer prices of rice/palay refer to the average for irrigated and non-irrigated palay. Source: Cororaton (2006)

Table 3. Distribution of PCE in Urban and Rural Areas (2000)

<table>
<thead>
<tr>
<th>Urbanization</th>
<th>Mean PCE</th>
<th>Standard Deviation</th>
<th>Coefficient of Variation</th>
<th>Minimum PCE</th>
<th>Maximum PCE</th>
<th>Poor HHs (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>32,446</td>
<td>40,944</td>
<td>1.26</td>
<td>1,566</td>
<td>1,780,613</td>
<td>17.0</td>
</tr>
<tr>
<td>Rural</td>
<td>15,993</td>
<td>17,254</td>
<td>1.08</td>
<td>1,852</td>
<td>1,255,645</td>
<td>47.1</td>
</tr>
<tr>
<td>Philippines</td>
<td>25,763</td>
<td>34,375</td>
<td>1.33</td>
<td>1,566</td>
<td>1,780,613</td>
<td>29.2</td>
</tr>
</tbody>
</table>

Note: PCE in pesos
Source of basic data: 2000 Family Income and Expenditure Survey

Table 4. Average RBSHARE (%) in Urban and Rural Households (2000)

<table>
<thead>
<tr>
<th>Urbanization</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>10.8</td>
<td>8.1</td>
</tr>
<tr>
<td>Rural</td>
<td>17.0</td>
<td>10.9</td>
</tr>
<tr>
<td>Philippines</td>
<td>13.3</td>
<td>9.8</td>
</tr>
</tbody>
</table>

Source of basic data: 2000 FIES, NSO

Table 5. Average Annual Rice Production of Farmers and Rice Income Share (2000)

<table>
<thead>
<tr>
<th>Region</th>
<th>Ave. Annual HH Rice Production (in Pesos)</th>
<th>Ave. Share of Rice Production to Total Income (Expenditures) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urban</td>
<td>Rural</td>
</tr>
<tr>
<td>PHILIPPINES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Ilocos Region</td>
<td>42,513</td>
<td>34,783</td>
</tr>
<tr>
<td>2. Cagayan Valley</td>
<td>24,057</td>
<td>21,820</td>
</tr>
<tr>
<td>3. Central Luzon</td>
<td>62,140</td>
<td>56,927</td>
</tr>
<tr>
<td>4. Southern Luzon</td>
<td>65,467</td>
<td>60,016</td>
</tr>
<tr>
<td>5. Bicol Region</td>
<td>46,586</td>
<td>48,431</td>
</tr>
<tr>
<td>6. Western Visayas</td>
<td>24,484</td>
<td>26,542</td>
</tr>
<tr>
<td>7. Central Visayas</td>
<td>26,513</td>
<td>26,873</td>
</tr>
<tr>
<td>8. Eastern Visayas</td>
<td>17,979</td>
<td>18,507</td>
</tr>
<tr>
<td>9. Western Mindanao</td>
<td>25,024</td>
<td>20,399</td>
</tr>
<tr>
<td>10. Northern Mindanao</td>
<td>27,052</td>
<td>22,524</td>
</tr>
<tr>
<td>11. Southern Mindanao</td>
<td>30,065</td>
<td>25,755</td>
</tr>
<tr>
<td>12. Central Mindanao</td>
<td>51,501</td>
<td>42,294</td>
</tr>
<tr>
<td>13. NCR</td>
<td>46,377</td>
<td>44,190</td>
</tr>
<tr>
<td>14. CAR</td>
<td>52,089</td>
<td>-</td>
</tr>
<tr>
<td>15. ARMM</td>
<td>43,307</td>
<td>25,083</td>
</tr>
<tr>
<td>16. CARAGA</td>
<td>73,991</td>
<td>43,222</td>
</tr>
</tbody>
</table>

Source of basic data: 2000 Family Income and Expenditure Survey
Table 6. Proportion of Rice Producers and Sellers By Region (2000)

<table>
<thead>
<tr>
<th>Region</th>
<th>Proportion of Rice Producers (%)</th>
<th>Proportion of Rice Producers Who Sell Rice (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHILIPPINES</td>
<td>16.3</td>
<td>96.6</td>
</tr>
<tr>
<td>1. Ilocos Region</td>
<td>37.2</td>
<td>98.9</td>
</tr>
<tr>
<td>2. Cagayan Valley</td>
<td>38.6</td>
<td>99.9</td>
</tr>
<tr>
<td>3. Central Luzon</td>
<td>17.6</td>
<td>99.7</td>
</tr>
<tr>
<td>4. Southern Luzon</td>
<td>10.5</td>
<td>96.9</td>
</tr>
<tr>
<td>5. Bicol Region</td>
<td>20.3</td>
<td>97.2</td>
</tr>
<tr>
<td>6. Western Visayas</td>
<td>25.0</td>
<td>96.8</td>
</tr>
<tr>
<td>7. Central Visayas</td>
<td>10.6</td>
<td>92.9</td>
</tr>
<tr>
<td>8. Eastern Visayas</td>
<td>22.7</td>
<td>87.8</td>
</tr>
<tr>
<td>9. Western Mindanao</td>
<td>19.6</td>
<td>95.3</td>
</tr>
<tr>
<td>10. Northern Mindanao</td>
<td>8.7</td>
<td>95.3</td>
</tr>
<tr>
<td>11. Southern Mindanao</td>
<td>7.2</td>
<td>91.8</td>
</tr>
<tr>
<td>12. Central Mindanao</td>
<td>24.9</td>
<td>97.2</td>
</tr>
<tr>
<td>13. NCR</td>
<td>0.2</td>
<td>100.0</td>
</tr>
<tr>
<td>14. CAR</td>
<td>36.7</td>
<td>97.8</td>
</tr>
<tr>
<td>15. ARMM</td>
<td>21.0</td>
<td>94.9</td>
</tr>
<tr>
<td>16. CARAGA</td>
<td>25.8</td>
<td>96.7</td>
</tr>
</tbody>
</table>

Source of basic data: 2000 Family Income and Expenditure Survey

Table 7. Proportion of Rice Producers and Sellers Urbanity (2000)

<table>
<thead>
<tr>
<th>Urbanization</th>
<th>Rice Producers (%)</th>
<th>Proportion of Rice Producers Who are Net Sellers (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>5.3</td>
<td>96.5</td>
</tr>
<tr>
<td>Rural</td>
<td>27.0</td>
<td>96.7</td>
</tr>
<tr>
<td>Philippines</td>
<td>16.3</td>
<td>96.6</td>
</tr>
</tbody>
</table>

Source of basic data: 2000 Family Income and Expenditure Survey
Table 8. Proportion of Net Consumers and Sellers By Urbanity (2000)

<table>
<thead>
<tr>
<th>Urbanization</th>
<th>Net Consumers (%)</th>
<th>Net Sellers (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>92.8</td>
<td>5.5</td>
</tr>
<tr>
<td>Rural</td>
<td>71.5</td>
<td>21.0</td>
</tr>
<tr>
<td>Philippines</td>
<td>81.1</td>
<td>14.8</td>
</tr>
</tbody>
</table>

Source of basic data: 2000 Family Income and Expenditure Survey

Table 9. Consumption and Production Patterns of Households by Income Decile (2000)

<table>
<thead>
<tr>
<th>National Income Decile</th>
<th>Average Rice Budget Share (%)</th>
<th>Ave. Palay Income Share of Rice Producers (%)</th>
<th>% Net Sellers (w/in Decile)</th>
<th>% Net Sellers (to Total HHs)</th>
<th>% Net Consumers</th>
<th>NBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.8</td>
<td>45.0</td>
<td>16.4</td>
<td>10.0</td>
<td>79.5</td>
<td>-0.11</td>
</tr>
<tr>
<td>2</td>
<td>11.9</td>
<td>46.1</td>
<td>23.8</td>
<td>15.1</td>
<td>72.2</td>
<td>-0.08</td>
</tr>
<tr>
<td>3</td>
<td>10.2</td>
<td>51.8</td>
<td>21.8</td>
<td>14.9</td>
<td>74.1</td>
<td>-0.08</td>
</tr>
<tr>
<td>4</td>
<td>9.1</td>
<td>54.9</td>
<td>19.5</td>
<td>13.5</td>
<td>76.5</td>
<td>-0.06</td>
</tr>
<tr>
<td>5</td>
<td>7.8</td>
<td>53.2</td>
<td>18.0</td>
<td>12.5</td>
<td>78.0</td>
<td>-0.05</td>
</tr>
<tr>
<td>6</td>
<td>6.8</td>
<td>57.3</td>
<td>14.3</td>
<td>9.7</td>
<td>81.6</td>
<td>-0.04</td>
</tr>
<tr>
<td>7</td>
<td>5.7</td>
<td>50.2</td>
<td>11.5</td>
<td>7.9</td>
<td>84.5</td>
<td>-0.04</td>
</tr>
<tr>
<td>8</td>
<td>4.6</td>
<td>49.0</td>
<td>10.1</td>
<td>6.7</td>
<td>85.8</td>
<td>-0.03</td>
</tr>
<tr>
<td>9</td>
<td>3.7</td>
<td>44.4</td>
<td>7.8</td>
<td>5.4</td>
<td>88.2</td>
<td>-0.03</td>
</tr>
<tr>
<td>10</td>
<td>2.6</td>
<td>36.2</td>
<td>6.2</td>
<td>4.1</td>
<td>89.8</td>
<td>-0.02</td>
</tr>
<tr>
<td>PHIL</td>
<td>13.2</td>
<td>50.0</td>
<td>14.9</td>
<td>81.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 4.1% of the HHs are on the net purchase line (i.e., NBR=0)

Source of basic data: 2000 Family Income and Expenditure Survey
Table 10. Average Welfare Changes (%) Due to Different Trade Reforms (2000)

<table>
<thead>
<tr>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doha reforms without changes in Philippine trade policy</td>
<td>full tariff reduction across sectors</td>
<td>elimination of QR and full tariff reduction</td>
</tr>
<tr>
<td>PHILIPPINES</td>
<td>-5.4</td>
<td>4.4</td>
</tr>
<tr>
<td>Urbanization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Urban</td>
<td>-4.5</td>
<td>3.5</td>
</tr>
<tr>
<td>2. Rural</td>
<td>-9.2</td>
<td>8.2</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Ilocos Region</td>
<td>-6.6</td>
<td>5.6</td>
</tr>
<tr>
<td>2. Cagayan Valley</td>
<td>-1.6</td>
<td>0.6</td>
</tr>
<tr>
<td>3. Central Luzon</td>
<td>-6.2</td>
<td>5.2</td>
</tr>
<tr>
<td>4. Southern Luzon</td>
<td>-5.2</td>
<td>4.2</td>
</tr>
<tr>
<td>5. Bicol Region</td>
<td>-4.7</td>
<td>3.7</td>
</tr>
<tr>
<td>6. Western Visayas</td>
<td>-5.1</td>
<td>4.1</td>
</tr>
<tr>
<td>7. Central Visayas</td>
<td>-4.4</td>
<td>3.4</td>
</tr>
<tr>
<td>8. Eastern Visayas</td>
<td>-4.4</td>
<td>3.4</td>
</tr>
<tr>
<td>9. Western Mindanao</td>
<td>-4.8</td>
<td>3.8</td>
</tr>
<tr>
<td>10. Northern Mindanao</td>
<td>-4.3</td>
<td>3.3</td>
</tr>
<tr>
<td>11. Southern Mindanao</td>
<td>-4.4</td>
<td>3.4</td>
</tr>
<tr>
<td>12. Central Mindanao</td>
<td>-20.0</td>
<td>19.0</td>
</tr>
<tr>
<td>13. NCR</td>
<td>-4.0</td>
<td>3.0</td>
</tr>
<tr>
<td>14. CAR</td>
<td>32.9</td>
<td>-33.9</td>
</tr>
<tr>
<td>15. ARMM</td>
<td>-7.1</td>
<td>6.1</td>
</tr>
<tr>
<td>16. CARAGA</td>
<td>-8.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Income Decile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-4.7</td>
<td>3.7</td>
</tr>
<tr>
<td>2</td>
<td>-5.4</td>
<td>4.4</td>
</tr>
<tr>
<td>3</td>
<td>-5.5</td>
<td>4.5</td>
</tr>
<tr>
<td>4</td>
<td>-5.8</td>
<td>4.8</td>
</tr>
<tr>
<td>5</td>
<td>-6.0</td>
<td>5.0</td>
</tr>
<tr>
<td>6</td>
<td>-6.0</td>
<td>5.0</td>
</tr>
<tr>
<td>7</td>
<td>-5.4</td>
<td>4.4</td>
</tr>
<tr>
<td>8</td>
<td>-5.5</td>
<td>4.5</td>
</tr>
<tr>
<td>9</td>
<td>-5.2</td>
<td>4.2</td>
</tr>
<tr>
<td>10</td>
<td>-5.2</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Source of basic data: 2000 Family Income and Expenditure Survey